Part 3: Fields

19 Extension Fields

- 19.1 The Fundamental Theorem of Field Theorey
- 19.2 Splitting Fields
- 19.3 Zeros of an Irreducible Polynomial
- 19.4 Exercises
- 19.5 Bibliography of Leopold Kronecker

20 Algebraic Extensions

- 20.1 Characterization of Extensions
- 20.2 Finite Extensions
- 20.3 Properties of Alebraic Extensions
- 20.4 Exercises
 - 20.5 Bibliography of Ernst Steinitz

21 Finite Fields

- 21.1 Classification of Finite Fields
- 21.2 Structure of Finite Fields
- 21.3 Subfields of a Finite Field
- 21.4 Exercises
- 21.5 Bibliography of L.E.Dickson
- 21.6 Bibliography of E.H.Moore

22 Geometric Constructions

- 22.1 Historical Discussion of Geometric Constructions
- 22.2 Constructible Numbers
- 22.3 Angle-Trisectors and Circle-Squares
- 22.4 Exercises

19 Extension Fields

19.1 The Fundamental Theorem of Field Theorey

Definition Extension Field

A field \mathbb{E} is an **extension field** of a field \mathbb{F} if $\mathbb{F} \subseteq \mathbb{E}$ and the operations of \mathbb{F} are those of \mathbb{E} restricted to \mathbb{F} .

- $\mathbb{F}(a,b) = \mathbb{F}(a)\mathbb{F}(b) = \mathbb{F}(b)\mathbb{F}(a).$
- $\mathbb{F}(c) = \mathbb{F}(ac+b), a, b \in \mathbb{F}.$
- $\mathbb{Q}(\sqrt{a},\sqrt{b}) = \mathbb{Q}(\sqrt{a}+\sqrt{b}).$

Theorem 19.1 Fundamental Theorem of Field Theory (Kronecker's Theorem)

Let \mathbb{F} be a field and let f(x) be a nonconstant polynomial in $\mathbb{F}[x]$. Then there is an extension field \mathbb{E} of \mathbb{F} in which f(x) has a zero.

Proof Let f(x) = p(x)g(x) where p(x) is irreducible. Then

 $\phi:\mathbb{F} o\mathbb{E},\,a\mapsto a+\langle p(x)
angle$ is one-to-one and preserves operations.

Write $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$,

then, in \mathbb{E} , $x + \langle p(x) \rangle$ is a zero of p(x), because

$$egin{aligned} p(x+\langle p(x)
angle) &= a_n(x+\langle p(x)
angle)^n + a_{n-1}(x+\langle p(x)
angle)^{n-1} + \cdots + a_0 \ &= a_n(x^n+\langle p(x)
angle) + a_{n-1}(x^{n-1}+\langle p(x)
angle) + \cdots + a_0 \ &= a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0 + \langle p(x)
angle \ &= p(x) + \langle p(x)
angle = 0 + \langle p(x)
angle. \end{aligned}$$

- Let $f(x)=(x^2+1)(x^3+2x+2)\in \mathbb{Z}_3[x]$, then $E=\mathbb{Z}_3[x]/\left\langle x^2+1
 ight
 angle$ with 9 elements, or $E=\mathbb{Z}_3/\left\langle x^3+2x+2
 ight
 angle$ with 27 elements.
- Every integral domain is contained in its field of quotients,

but it's not true for commutative rings in general,

such as $f(x) = 2x + 1 \in \mathbb{Z}_4[x]$ has no zero in any ring containing \mathbb{Z}_4 as a subring. Otherwise $0 = 2\beta + 1 = 4\beta + 2 = 2$, which is not true.

19.2 Splitting Fields

Definition Splitting Field

Let \mathbb{E} be an extension field of \mathbb{F} and let $f(x) \in \mathbb{F}[x]$ with degree at least 1. We say that f(x) splits in $\mathbb E$ if there are elements $a\in\mathbb F$ and $a_1,a_2,\cdots,a_n\in\mathbb E$ such that

$$f(x)=a(x-a_1)(x-a_2)\cdots(x-a_n).$$

We call \mathbb{E} a **splitting field** for f(x) over \mathbb{F} if $\mathbb{E} = \mathbb{F}(a_1, a_2, \cdots, a_n)$.

• A splitting field of $x^2 + 1$ over \mathbb{Q} is $\mathbb{Q}(\mathbf{i})$, and over \mathbb{R} is \mathbb{C} .

Theorem 19.2 Existence of Splitting Fields

Let \mathbb{F} be a field and let f(x) be a nonconstant element of $\mathbb{F}[x]$. Then there exists a splitting field \mathbb{E} for f(x) over \mathbb{F} .

- A splitting field for $f(x) = (x^2 2)(x^2 + 1)$ over \mathbb{Q} is $Q(\sqrt{2}, \mathbf{i}) = \mathbb{Q}(\sqrt{2})(\mathbf{i}) = \left\{ (a + b\sqrt{2}) + (c + d\sqrt{2})\mathbf{i} \mid a, b, c, d \in \mathbb{Q} \right\}.$ • Both $\mathbb{Z}_3(\mathbf{i})$ and $\mathbb{Z}_3[x] / \langle x^2 + x + 2 \rangle$ are splitting fields for $x^2 + x + 2$ over \mathbb{Z}_3 .

Theorem 19.3 $\mathbb{F}(a) \approx \mathbb{F}[x] / \langle p(x) \rangle$

Let $\mathbb F$ be a field and let $p(x)\in \mathbb F[x]$ be irreducible over $\mathbb F$. If a is a zero of p(x) in some extension $\mathbb E$ of $\mathbb F$, then $\mathbb F(a) \approx \mathbb F[x]/\langle p(x) \rangle$. Futhermore, if $\deg p(x) = n$, then every member of $\mathbb{F}(a)$ can be uniquely expressed in the form

$$c_{n-1}a^{n-1} + c_{n-2}a^{n-2} + \dots + c_1a + c_0,$$

where $c_0, c_1, \cdots, c_{n-1} \in \mathbb{F}$.

- The set $\{1, a, \cdots, a^{n-1}\}$ is a basis for $\mathbb{F}(a)$ over \mathbb{F} .
- If p(x) is reducible, then the splitting field for p(x) has at most n! basis elements over \mathbb{F} .

Corollary $\mathbb{F}(a) \approx \mathbb{F}(b)$

Let \mathbb{F} be a field and let $p(x) \in \mathbb{F}[x]$ be irreducible over \mathbb{F} . If a is a zero of p(x) in some extension \mathbb{E} of \mathbb{F} and b is a zero of p(x) in some extension \mathbb{E}' of \mathbb{F} , then $\mathbb{F}(a) \approx \mathbb{F}(b)$.

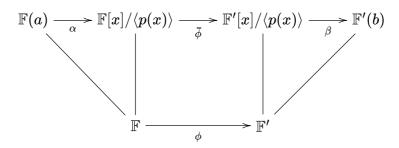
Lemma

Let \mathbb{F} be a field, let $p(x) \in \mathbb{F}[x]$ be irreducible over \mathbb{F} , and let a be a zero of p(x) in some extension of \mathbb{F} . If ϕ is a field isomorphism from \mathbb{F} to \mathbb{F}' and b is a zero of $\phi(p(x))$ in some extension of \mathbb{F}' , then there is an isomorphism from $\mathbb{F}(a)$ to $\mathbb{F}'(b)$ that agrees with ϕ on \mathbb{F} and carries a to b.

Proof Define

$$egin{array}{lll} \phi:&\mathbb{F} o\mathbb{F}'\ ar{\phi}:&\mathbb{F}[x]/\langle p(x)
angle o\mathbb{F}'[x]/\langle p(x)
angle\ f(a) o\mathbb{F}[x]/\langle p(x)
angle\ f(a) o\mathbb{F}(x)+\langle p(x)
angle\ f(x)+\langle p(x)
angle o\mathbb{F}'(b)\ f(x)+\langle \phi(p(x))
angle o\mathbb{F}'(b)\ f(x)+\langle \phi(p(x))
angle o\mathbb{F}(b) \end{array}$$

Then $\beta \overline{\phi} lpha : \mathbb{F}(a)
ightarrow \mathbb{F}'(b).$



Theorem 19.4 Extending $\phi:\mathbb{F}
ightarrow\mathbb{F}'$

Let ϕ be an isomorphism from a field \mathbb{F} to a field \mathbb{F}' and let $f(x) \in \mathbb{F}[x]$. If \mathbb{E} is a splitting field for f(x) over \mathbb{F} and \mathbb{E}' is a splitting field for $\phi(f(x))$ over \mathbb{F}' , then there is an isomorphism from \mathbb{E} to \mathbb{E}' that agrees with ϕ on \mathbb{F} .

Corollary Splitting Fields Are Unique

Let $\mathbb F$ be a field and let $f(x)\in \mathbb F[x]$, then any two splitting fields of f(x) over $\mathbb F$ are isomorphic.

Proof Letting ϕ be the identity from \mathbb{F} to \mathbb{F} .

• The splitting field of $x^n - a$ over \mathbb{Q} is $\mathbb{Q}(\sqrt[n]{a}, \omega)$, where $\omega = \mathrm{e}^{2\pi\mathrm{i}/n}$.

19.3 Zeros of an Irreducible Polynomial

Definition Derivative

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ belong to $\mathbb{F}[x]$. The derivative of f(x), denoted by f'(x), is the polynomial $na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \cdots + a_1$ in $\mathbb{F}[x]$.

Lemma Properties of the Derivative

Let
$$f(x), g(x) \in \mathbb{F}[x], \ a \in \mathbb{F}$$
, then
1. $(f(x) + g(x))' = f'(x) + g'(x).$
2. $(af(x))' = af'(x).$
3. $(f(x)g(x))' = f(x)g'(x) + g(x)f'(x)$

Theorem 19.5 Criterion for Multiple Zeros

A polynomial f(x) over a field \mathbb{F} has a multiple zero in some extension \mathbb{E} if and only if f(x) and f'(x) have a common factor of positive degree in $\mathbb{F}[x]$.

Theorem 19.6 Zeros of an Irreducible

Let f(x) be an irreducible polynomial over a field \mathbb{F} . If \mathbb{F} has characteristic 0, then f(x) has no multiple zeros. If \mathbb{F} has characteristic $p \neq 0$, then f(x) has a multiple zero only if it is of the form $f(x) = g(x^p)$ for some g(x) in $\mathbb{F}[x]$.

Definition Perfect Field

A field \mathbb{F} is called **perfect** if \mathbb{F} has characteristic 0 or if \mathbb{F} has characteristic p and $\mathbb{F}^p = \{a^p \mid a \in \mathbb{F}\} = \mathbb{F}$.

Theorem 19.7 Finite Fields Are Perfect

Every finite field is perfect.

Proof $\phi(x) = x^p$ preserves operations, and is one-to-one and onto.

Theorem 19.8 Criterion for No Multiple Zeros

If f(x) is an irreducible polynomial over a perfect field $\mathbb F$, then f(x) has no multiple zeros.

Proof Let \mathbb{F} has characeteristic p, and that $f(x) = g(x^p)$, since $\mathbb{F}^p = \mathbb{F}$, we have

$$egin{aligned} f(x) &= g(x^p) = a_n x^{pn} + a_{n-1} x^{p(n-1)} + \dots + a_1 x^p + a_0 \ &= b_n^p x^{pn} + b_{n-1}^p x^{p(n-1)} + \dots + b_1^p x^p + b_0^p \ &= (b_n x^n + b_{n-1} x^{n-1} + \dots + b_0)^p = (h(x))^p, \end{aligned}$$

but then f(x) is reducible.

Theorem 19.9 Zeros of an Irreducible over a Splitting Field

Let f(x) be an irreducible polynomial over a field \mathbb{F} and let \mathbb{E} be a splitting field of f(x) over \mathbb{F} . Then all the zeros of f(x) in \mathbb{E} have the same multiplicity.

Proof If a has multiplicity m, then in $\mathbb{E}[x]$ we may write $f(x) = (x - a)^m g(x) = \phi(f(x)) = (x - b)^m \phi(g(x))$, thus the multiplicity of a is less than b. Likewise, the multiplicity of b is less than a.

• Let f(x) be an irreducible polynomial over a field \mathbb{F} , then the number of distinct zeros of f(x) in a splitting field divides deg f(x).

Corollary Factorization of an Irreducible over a Splitting Field

Let f(x) be an irreducible polynomial over a fied \mathbb{F} and let \mathbb{E} be a splitting field of f(x). Then f(x) has the form

$$f(x)=a(x-a_1)^n(x-a_2)^n\cdots(x-a_t)^n,$$

where a_1, a_2, \cdots, a_t are distinct elements of \mathbb{E} and $a \in \mathbb{F}$.

19.4 Exercises

1. If f(x) and g(x) are relatively prime in $\mathbb{F}[x]$, they are also relatively prime in $\mathbb{E}[x]$, where \mathbb{E} is any extension field of \mathbb{F} .

Question: 42.

20 Algebraic Extensions

20.1 Characterization of Extensions

Definition Types of Extensions

Let \mathbb{E} be an extension field of a field \mathbb{F} and let $a \in \mathbb{E}$. We call a **algebraic** over \mathbb{F} if a is the zero of some nonzero polynomial in $\mathbb{F}[x]$. Otherwise, it is called **transcendental** over \mathbb{F} . An extension \mathbb{E} of \mathbb{F} is called an **algebraic extension** of \mathbb{F} if every element of \mathbb{E} is algebraic over \mathbb{F} . Otherwise, it is called a **transcendental** extension of \mathbb{F} . An extension of \mathbb{F} of the form $\mathbb{F}(a)$ is called a **simple extension** of \mathbb{F} .

Theorem 20.1 Characterization of Extensions

Let $\mathbb E$ be an extension field of the field $\mathbb F$ and let $a\in\mathbb E$. If a is transcendental over $\mathbb F$, then $\mathbb F(a)\approx\mathbb F(x).$

If a is algebraic over \mathbb{F} , then $\mathbb{F}(a) \approx \mathbb{F}[x]/\langle p(x) \rangle$, where p(x) is a polynomial in $\mathbb{F}[x]$ of minimum degree such that p(a) = 0. Moreover, p(x) is irreducible over \mathbb{F} .

Theorem 20.2 Uniqueness Property

If a is algebraic over a field \mathbb{F} , then there is a unique monic irreducible polynomial p(x) in $\mathbb{F}[x]$ such that p(a) = 0, which is called the **minimal polynomial** for a over \mathbb{F} .

Theorem 20.3 Divisibility Property

Let a be algeraic over \mathbb{F} , and let p(x) be the minimal polynomial for a over \mathbb{F} . If $f(x) \in \mathbb{F}[x]$ and f(a) = 0, then $p(x) \mid f(x)$ in $\mathbb{F}[x]$.

20.2 Finite Extensions

Definition Degree of an Extension

Let \mathbb{E} be an extension field of a field \mathbb{F} . We say that \mathbb{E} has **degree** n over \mathbb{F} and write $[\mathbb{E}:\mathbb{F}] = n$ if \mathbb{E} has dimension n as a vector space over \mathbb{F} . If $[\mathbb{E}:\mathbb{F}]$ is finite, \mathbb{E} is called a **finite extension** of \mathbb{F} ; otherwise, we say that \mathbb{E} is an **infinite extension** of \mathbb{F} .

$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(\sqrt[3]{2})$	$\mathbb{Q}(\sqrt[6]{2})$	\mathbb{E}	\mathbb{C}	$\mathbb{F}(a)$
2	3	6	n	2	n
Q	Q	Q	F	\mathbb{R}^{+}	Ē

Theorem 20.4 Finite Implies Algebraic

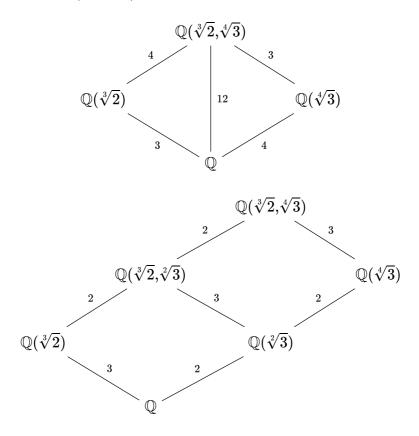
If \mathbb{E} is a finite extension of \mathbb{F} , then \mathbb{E} is an algebraic extension of \mathbb{F} .

• The converse is not true, since $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \sqrt[4]{2}, \cdots)$ is an algebraic extension of \mathbb{Q} .

Theorem 20.5 $[\mathbb{K}:\mathbb{F}] = [\mathbb{K}:\mathbb{E}][\mathbb{E}:\mathbb{F}]$

Let \mathbb{K} be a finite extension field of the field \mathbb{E} and let \mathbb{E} be a finite extension field of the field \mathbb{F} .

- $[\mathbb{L}:\mathbb{J}]=n$ if and only if $\mathbb{L}pprox \mathbb{J}^n$.
- The subfield lattice of $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{3})$ is the same as the subgroup lattice of \mathbb{Z}_{12} .



Theorem 20.6 Primitive Element Theorem

If \mathbb{F} is a field of characteristic 0, and a and b are algebraic over F, then there is an element c in $\mathbb{F}(a, b)$ such that $\mathbb{F}(a, b) = \mathbb{F}(c)$.

- Any finite extension of a field of characteristic 0 is a simple extension.
- An element *a* with the property that $\mathbb{E} = \mathbb{F}(a)$ is called a **primitive element** of \mathbb{E} .

20.3 Properties of Alebraic Extensions

Theorem 20.7 Algbraic over Algebraic Is Algebraic

If \mathbb{K} is an algebraic extension of \mathbb{E} and \mathbb{E} is an algebraic extension of \mathbb{F} , then \mathbb{K} is an algebraic extension of \mathbb{F} .

Corollary Subfield of Algebraic Elements

Let \mathbb{E} be an extension field of the field \mathbb{F} . Then the set of all elements of \mathbb{E} that are algebraic over \mathbb{F} is a subfield of \mathbb{E} .

Proof Suppose that $a, b \in \mathbb{E}$ are algebraic over \mathbb{F} and $b \neq 0$, to show that a + b, a - b, ab, a/b are algebraic, it suffices to show that $[\mathbb{F}(a, b) : \mathbb{F}] = [\mathbb{F}(a, b) : \mathbb{F}(b)][\mathbb{F}(b) : \mathbb{F}]$ is finite.

- This subfield is called the **algebraic closure** of \mathbb{F} in \mathbb{E} .
- A field with no proper algebraic extension is called **algebraically closed**.
- Every field \mathbb{F} has a unique (up to isomorphism) algebraic extension that is algebraically closed, which is called the **algebraic closure** of \mathbb{F} .

20.4 Exercises

Degree

- 1. If $\mathbb E$ is an extension of $\mathbb F$ of prime degree, then $orall a \in \mathbb E, \mathbb F(a) = \mathbb F$ or $\mathbb F(a) = \mathbb E$.
- 2. $[\mathbb{E}:\mathbb{F}] = 1 \Leftrightarrow \mathbb{E} = \mathbb{F}.$
- 3. If $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{L}$ and \mathbb{L} is a finite extension, then $[\mathbb{L} : \mathbb{F}] = [\mathbb{L} : \mathbb{K}] \Leftrightarrow \mathbb{F} = \mathbb{K}$.
- 4. Let $\mathbb{F} \subseteq \mathbb{E}_1, \mathbb{E}_2 \subseteq \mathbb{K}$, if $[\mathbb{E}_1 : \mathbb{F}]$ and $[\mathbb{E}_2 : \mathbb{F}]$ are both prime, then $\mathbb{E}_1 = \mathbb{E}_2$ or $\mathbb{E}_1 \cap \mathbb{E}_2 = \mathbb{F}$.
- 5. If f(x) and g(x) are irreducible over \mathbb{F} and deg f(x) and deg g(x) are relatively prime. If a is a zero of f(x) in some extension \mathbb{F} , then g(x) is irreducible over $\mathbb{F}(a)$.
- 6. Let \mathbb{E} be an algebraic extension of a field \mathbb{D} . If \mathbb{R} is a ring and $\mathbb{E} \supseteq \mathbb{R} \supseteq \mathbb{F}$, show that \mathbb{R} must be a field.

Algebraic and Transcendental

1. If a is algebraic over \mathbb{Q} , then $a^{m/n}$ is algebraic over \mathbb{Q} .

If a is transcendental over \mathbb{Q} , then $a^{m/n}$ is transcendental over \mathbb{Q} .

- 2. If α and β are real and transcendental over \mathbb{Q} , then either $\alpha\beta$ or $\alpha + \beta$ is also transcendental over \mathbb{Q} .
- 3. Let f(x) be a nonconstant element of $\mathbb{F}[x]$. If a belongs to some extension of \mathbb{F} and f(a) is algebraic over \mathbb{F} , then a is algebraic over \mathbb{F} .

Others

- 1. If ${\mathbb F}$ is a field and the multplicative group of nonzero elements of ${\mathbb F}$ is cyclic, then ${\mathbb F}$ is finite.
- 2. A splitting field $\mathbb K$ of $\mathbb F$ is a finite extension.

20.5 Bibliography of Ernst Steinitz

21 Finite Fields

21.1 Classification of Finite Fields

Theorem 21.1 Classification of Finite Fields

For each prime p and each positive integer n, there is, up to isomorphism, a unique finite field or order p^n .

Proof The splitting field $\mathbb E$ of $f(x)=x^{p^n}-x$ over $\mathbb Z_p$ has exactly p^n elements and is unique.

• A field of order p^n is denoted by $\mathrm{GF}(p^n)$.

21.2 Structure of Finite Fields

Theorem 21.2 Structure of Finite Fields

As a group under addition, $\operatorname{GF}(p^n) \approx \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$;

As a group under multiplication, $\mathrm{GF}(p^n)^* pprox \mathbb{Z}_{p^n-1}$, which is cyclic.

• $\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$ is not a field.

It's a vector space over \mathbb{Z}_p with $\{(1,0,\cdots,0),\cdots,(0,0,\cdots,1)\}$ as a basis.

Corollary 1

 $[\operatorname{GF}(p^n) : \operatorname{GF}(p)] = n.$

$$\bullet \ \ [\mathrm{GF}(p^m):\mathrm{GF}(p^n)] = \frac{[\mathrm{GF}(p^m):\mathrm{GF}(p)]}{[\mathrm{GF}(p^n):\mathrm{GF}(p)]} = m/n.$$

Corollary 2 $\operatorname{GF}(p^n)$ Contains an Element of Degree n

Let a be a generator of the group of nonzero elements of $GF(p^n)$ under multiplication, then a is algebraic over GF(p) of degree n.

Proof $[\operatorname{GF}(p)(a) : \operatorname{GF}(p)] = [\operatorname{GF}(p^n) : \operatorname{GF}(p)] = n.$

Theorem 21.3 Zeros of an Irreducible over \mathbb{Z}_p

Let $f(x) \in \mathbb{Z}_p[x]$ be an irreducible polynomial over \mathbb{Z}_p of degree d and let a be a zero of f(x) in some extension \mathbb{E} of \mathbb{Z}_p . Then $a, a^p, a^{p^2}, \cdots, a^{p^{d-1}}$ are the zeros of f(x) and they are distinct.

• To prove it, notice that $orall i\in\mathbb{N}^+, orall c\in\mathbb{Z}_p^*,\, c=c^p=c^{p^i}$ and the automorphism of $\mathrm{GF}(p^n)$ given by $\phi(x)=x^{p^i}.$

Corollary Splitting Field of an Irreducible Polynomial Over \mathbb{Z}_p

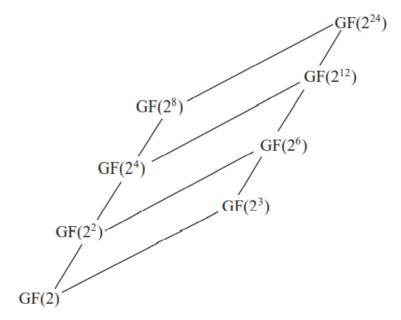
If f(x) is an irreducible polynomial over \mathbb{Z}_p and a is a zero of f(x) in some extension field of \mathbb{Z}_p , then $\mathbb{Z}_p(a)$ is the splitting field of f(x) over \mathbb{Z}_p .

21.3 Subfields of a Finite Field

Theorem 21.4 Subfields of a Finite Field

For each divisor m of n, $GF(p^n)$ has a unique subfield of order p^m . Moreover, these are the only subfields of $GF(p^n)$.

- $\mathbb{K} = \left\{ x \in \mathrm{GF}(p^n) \mid x^{p^m} = x
 ight\}$ is a subfield of $\mathrm{GF}(p^n)$ of order p^m .
- The subfield lattice of ${
 m GF}(2^{24})$



Theorem 21.5 Degrees of Irreducible Factors of $x^{p^n} - x$ over \mathbb{Z}_p

The degree of an irreducible factor of $x^{p^n} - x$ over \mathbb{Z}_p divides n.

Proof If g(x) is an irreducible factor of $x^{p^n} - x$ over \mathbb{Z}_p with degee d and $a \in \mathrm{GF}(p^n)$ is a zero of g(x), then $|\mathbb{Z}_p(a)| = p^d$. \bigstar

21.4 Exercises

- 1. If $|\mathbb{F}| = 2^p$, then $x = (x^n)^2$.
- 2. If p(x) is a polynomial in \mathbb{Z}_p with no multiple zeros, then p(x) divides $x^{p^n} x$ for some n. (Hint: consider $\mathbb{Z}_p(x_1, x_2, \cdots, x_m)$.)
- 3. If a is a nonsquare in \mathbb{Z}_p where $p \neq 2$, then a is a nonsquare in $\mathrm{GF}(p^n)$ if and only if n is odd.
- 4. $x^{p^n} x + 1$ has no zero in $GF(p^n)$, thus <u>no finite field is algebraically closed</u>. (Or find a prime q such that $q \nmid n$, then $GF(p^{nq})$ is a proper extension.)
- 5. A finite extension of a finite field is a simple extension. (Hint: find a generator.)
- 6. If $\operatorname{GF}(5^2) = \mathbb{Z}_5(a)$, then $\operatorname{GF}(5^n)^* = \{1, 1+a, 1+a+a^2, \cdots, 1+a+a^2+a^3+\cdots+a^{23}\}.$

Proof: To prove that there is no zero in the set, we need only to verify that $1 + a + \cdots + a^n$ is not a zero.

7.

Q50 distinct.

Confusion: 58, is a generator.

```
Confusion: 61, is 1 + a + \cdots + a^n a zero?
```

21.5 Bibliography of L.E.Dickson

21.6 Bibliography of E.H.Moore

22 Geometric Constructions

22.1 Historical Discussion of Geometric Constructions

22.2 Constructible Numbers

22.3 Angle-Trisectors and Circle-Squares

22.4 Exercises