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19 Extension Fields  
19.1 The Fundamental Theorem of Field Theorey  
Definition Extension Field

A field  is an extension field of a field  if  and the operations of  are those of  
restricted to .

.
.

.

Theorem 19.1 Fundamental Theorem of Field Theory (Kronecker's Theorem)

Let  be a field and let  be a nonconstant polynomial in . Then there is an 
extension field  of  in which  has a zero.

Proof Let  where  is irreducible. Then

 is one-to-one and preserves operations.

Write ,
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then, in ,  is a zero of , because

Let , then  with  elements, 
or  with  elements.

Every integral domain is contained in its field of quotients,

but it's not true for commutative rings in general,

such as  has no zero in any ring containing  as a subring. 
Otherwise , which is not true.

19.2 Splitting Fields  
Definition Splitting Field

Let  be an extension field of  and let  with degree at least . We say that 
 splits in  if there are elements  and  such that

We call  a splitting field for  over  if .

A splitting field of  over  is , and over  is .

Theorem 19.2 Existence of Splitting Fields

Let  be a field and let  be a nonconstant element of . Then there exists a splitting 
field  for  over .

A splitting field for  over  is 

.

Both  and  are splitting fields for  over .

Theorem 19.3 

Let  be a field and let  be irreducible over . If  is a zero of  in some 
extension  of , then . Futhermore, if , then every 
member of  can be uniquely expressed in the form

where .

The set  is a basis for  over .
If  is reducible, then the splitting field for  has at most  basis elements over .

Corollary 

Let  be a field and let  be irreducible over . If  is a zero of  in some 
extension  of  and  is a zero of  in some extension  of , then .

Lemma
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Let  be a field, let  be irreducible over , and let  be a zero of  in some 
extension of . If  is a field isomorphism from  to  and  is a zero of  in some 
extension of , then there is an isomorphism from  to  that agrees with  on  
and carries  to .

Proof Define

Then .

Theorem 19.4 Extending 

Let  be an isomorphism from a field  to a field  and let . If  is a splitting 
field for  over  and  is a splitting field for  over , then there is an 
isomorphism from  to  that agrees with  on .

Corollary Splitting Fields Are Unique

Let  be a field and let , then any two splitting fields of  over  are 
isomorphic.

Proof Letting  be the identity from  to .

The splitting field of  over  is , where .

19.3 Zeros of an Irreducible Polynomial  
Definition Derivative

Let  belong to . The derivative of , 
denoted by , is the polynomial  in .

Lemma Properties of the Derivative

Let , then

1. .
2. .
3. .

Theorem 19.5 Criterion for Multiple Zeros

A polynomial  over a field  has a multiple zero in some extension  if and only if  
and  have a common factor of positive degree in .
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Theorem 19.6 Zeros of an Irreducible

Let  be an irreducible polynomial over a field . If  has characteristic , then  has 
no multiple zeros. If  has characteristic , then  has a multiple zero only if it is of 
the form  for some  in .

Definition Perfect Field

A field  is called perfect if  has characteristic  or if  has characteristic  and 
.

Theorem 19.7 Finite Fields Are Perfect

Every finite field is perfect.

Proof  preserves operations, and is one-to-one and onto.

Theorem 19.8 Criterion for No Multiple Zeros

If  is an irreducible polynomial over a perfect field , then  has no multiple zeros.

Proof Let  has characeteristic , and that , since , we have

but then  is reducible.

Theorem 19.9 Zeros of an Irreducible over a Splitting Field

Let  be an irreducible polynomial over a field  and let  be a splitting field of  
over . Then all the zeros of  in  have the same multiplicity.

Proof If  has multiplicity , then in  we may write 
, thus the multiplicity of  is less than . 

Likewise, the multiplicity of  is less than .

Let  be an irreducible polynomial over a field , then the number of distinct zeros of 
 in a splitting field divides .

Corollary Factorization of an Irreducible over a Splitting Field

Let  be an irreducible polynomial over a fied  and let  be a splitting field of . 
Then ) has the form

where  are distinct elements of  and .

19.4 Exercises  
1. If  and  are relatively prime in , they are also relatively prime in , where  

is any extension field of .

Question: 42.
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19.5 Bibliography of Leopold Kronecker  
 

20 Algebraic Extensions  
20.1 Characterization of Extensions  
Definition Types of Extensions

Let  be an extension field of a field  and let . We call  algebraic over  if  is the 
zero of some nonzero polynomial in . Otherwise, it is called transcendental over . An 
extension  of  is called an algebraic extension of  if every element of  is algebraic 
over . Otherwise, it is called a transcendental extension of . An extension of  of the 
form  is called a simple extension of .

Theorem 20.1 Characterization of Extensions

Let  be an extension field of the field  and let . If  is transcendental over , then 
.

If  is algebraic over , then , where  is a polynomial in  of 
minimum degree such that . Moreover,  is irreducible over .

Theorem 20.2 Uniqueness Property

If  is algebraic over a field , then there is a unique monic irreducible polynomial  in 
 such that , which is called the minimal polynomial for  over .

Theorem 20.3 Divisibility Property

Let  be algeraic over , and let  be the minimal polynomial for  over . If 
 and , then  in .

20.2 Finite Extensions  
Definition Degree of an Extension

Let  be an extension field of a field . We say that  has degree  over  and write 
 if  has dimension  as a vector space over . If  is finite,  is called a 

finite extension of ; otherwise, we say that  is an infinite extension of .

Theorem 20.4 Finite Implies Algebraic

If  is a finite extension of , then  is an algebraic extension of .

The converse is not true, since  is an algebraic extension of .

Theorem 20.5 

Let  be a finite extension field of the field  and let  be a finite extension field of the field 
.
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 if and only if .

The subfield lattice of  is the same as the subgroup lattice of .

 

Theorem 20.6 Primitive Element Theorem

If  is a field of characteristic , and  and  are algebraic over , then there is an element  
in  such that .

Any finite extension of a field of characteristic  is a simple extension.
An element  with the property that  is called a primitive element of .

20.3 Properties of Alebraic Extensions  
Theorem 20.7 Algbraic over Algebraic Is Algebraic

If  is an algebraic extension of  and  is an algebraic extension of , then  is an 
algebraic extension of .

Corollary Subfield of Algebraic Elements

Let  be an extension field of the field . Then the set of all elements of  that are algebraic 
over  is a subfield of .

Proof Suppose that  are algebraic over  and , to show that , , ,  
are algebraic, it suffices to show that  is finite.

This subfield is called the algebraic closure of  in .
A field with no proper algebraic extension is called algebraically closed.
Every field  has a unique (up to isomorphism) algebraic extension that is algebraically 
closed, which is called the algebraic closure of .
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20.4 Exercises  
Degree

1. If  is an extension of  of prime degree, then .
2. .
3. If  and  is a finite extension, then .
4. Let , if  and  are both prime, then  or 

.
5. If  and  are irreducible over  and  and  are relatively prime. If  

is a zero of  in some extension , then  is irreducible over .
6. Let  be an algebraic extension of a field . If  is a ring and , show that  must 

be a field.

Algebraic and Transcendental

1. If  is algebraic over , then  is algebraic over .

If  is transcendental over , then  is transcendental over .

2. If  and  are real and transcendental over , then either  or  is also 
transcendental over . ⭐ 

3. Let  be a nonconstant element of . If  belongs to some extension of  and  is 
algebraic over , then  is algebraic over .

Others

1. If  is a field and the multplicative group of nonzero elements of  is cyclic, then  is finite.
2. A splitting field  of  is a finite extension.

20.5 Bibliography of Ernst Steinitz  
 

21 Finite Fields  
21.1 Classification of Finite Fields  
Theorem 21.1 Classification of Finite Fields

For each prime  and each positive integer , there is, up to isomorphism, a unique finite 
field or order .

Proof The splitting field  of  over  has exactly  elements and is unique.

A field of order  is denoted by .

21.2 Structure of Finite Fields  
Theorem 21.2 Structure of Finite Fields

As a group under addition, ;

As a group under multiplication, , which is cyclic.

 is not a field.
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It's a vector space over  with  as a basis.

Corollary 1

.

.

Corollary 2  Contains an Element of Degree 

Let  be a generator of the group of nonzero elements of  under multiplication, 
then  is algebraic over  of degree .

Proof .

Theorem 21.3 Zeros of an Irreducible over 

Let  be an irreducible polynomial over  of degree  and let  be a zero of 
 in some extension  of . Then  are the zeros of  and they 

are distinct.

To prove it, notice that  and the automorphism of  
given by .

Corollary Splitting Field of an Irreducible Polynomial Over 

If  is an irreducible polynomial over  and  is a zero of  in some extension field 
of , then  is the splitting field of  over .

21.3 Subfields of a Finite Field  
Theorem 21.4 Subfields of a Finite Field

For each divisor  of ,  has a unique subfield of order . Moreover , these are 
the only subfields of .

 is a subfield of  of order .

The subfield lattice of 

Theorem 21.5 Degrees of Irreducible Factors of  over 
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The degree of an irreducible factor of  over  divides .

Proof If  is an irreducible factor of  over  with degee  and  is a zero 
of , then . ⭐ 

21.4 Exercises  
1. If , then .

2. If  is a polynomial in  with no multiple zeros, then  divides  for some . 
(Hint: consider .)

3. If  is a nonsquare in  where , then  is a nonsquare in  if and only if  is 
odd. 

4.  has no zero in , thus no finite field is algebraically closed. (Or find a 
prime  such that , then  is a proper extension.)

5. A finite extension of a finite field is a simple extension. (Hint: find a generator.)

6. If , then 
.

Proof: To prove that there is no zero in the set, we need only to verify that  
is not a zero.

7.  

Q50 distinct.

Confusion: 58, is a generator.

Confusion: 61, is  a zero?

 

21.5 Bibliography of L.E.Dickson  

21.6 Bibliography of E.H.Moore  
 

22 Geometric Constructions  
22.1 Historical Discussion of Geometric
Constructions

 

22.2 Constructible Numbers  

22.3 Angle-Trisectors and Circle-Squares  

22.4 Exercises  
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